M od ernizing F ortrani T
Legacy Cod es

Charles D. N orton” and V iktor K . Decyk 2

High Performance Computing Systems and Applications G roup and
Centerfor Space Mission Information and Software Systems

"National Aeronautics and Space Administration
JetPropulsion Laboratory, Calltornla Institute otlechnology
MS 168-522

4800 0 ak G rove Drive §

Pasadena, California 91109-8099

“Department of Physics and Astronomy
Universily of C alifornia atLos Angeles
Los Angeles, CA 90095- 1547

Email: Charles.D. Norton@]pl nasa. go , Viktor. Decyk@physms ucla.edu

Keywords: Fortran 90, Sc1ent1ﬁc Programmmg, Legacy Codes

1 Modernizing Scientific Software

Legacy software has great value since it is generally well debugged, produces results that are
trusted, and is actively meeting end-user goals. The amount of hidden expert knowledge
embedded in such software can be significant making its preservation important.
Nevertheless, legacy software has limitations. It can be difficult to extend, modify, and it does
not support collaborative development very well. This can impede the ability to meet new
and expanded mission goals as timelines and budgets become tighter. One approach to this
problem is to rewrite the software from scratch, but this may introduce more serious costs. In
particular, developing new verification and validation tests can be expensive. Also, ensuring
that the legacy code was faithfully rewritten, regardless of the programming language applied,

cannot always be guaranteed.

Generally, if the functionality of the legacy software is sound, it can be wrapped in a modern
interface where the original code is. mostly unmodified. The idea of wrapping code means that
the original legacy software is preserved while a new -layer of software is introduced to
separate the old software from the new software. The wrapper provides the best means of
retaining the functionality of the legacy software investment while providing a more flexible

context from which new software, based on modern concepts, can be introduced.

There are many benefits to this. approach:

1. Software remains in productive use while applications are modernized.

2. Avoids costly and potentially harmful software rewrites.

3. Promotes collaborative development while resolving organization problems exhibited
in older codes.

4. Re-engineering occurs more quickly than rewriting, while preserving verification and
validation tests, especially when the original programmers are involved.

5. Old bugs are uncovered.

Extending the functionality:.oflegacy- systems: has -become more important as modern

applications increase in complexity and require the interaction of multiple contributors.

1.1 The Technology APpliea'

We have found that Fortran 90/95 has new features to support object-oriented principles
beneficial for scientific programming and introduce a design methodology that defines a step-
by-step process to modernize legacy application codes using state-of-the art software

practices. While we emphasize Fortran applications, due to the abundance of Fortran legacy
codes, similar techniques can be applied to software written in other domain-specific or

general-purpose languages, including C or C++. As such, existing flight-related software is not

excluded from modernization. Con

Our process begins by upgrading the existing Fortran. application to standard conforming
Fortran 90/95. Next, interfaces to the original application routines are introduced to add

safety features by detecting common programming errors. These interfaces ensure that the

2 September 15, 2000

wrapper layer, added next, alviiéys"correctly calls the légaéy code. This wrapper layer allows
problem based object abstractions to be introduced that interact cleanly with the legacy code,
while supporting new enhancements. Tt also preserves the original, mostly unmodified, legacy
software. The user can communicate with the modernized code across these layers and
continuous development can occur simultaneously among these layers. The figure below

shows the general approach

On-going
Software

‘Developmen

1.2 Fortran 90/95 Featufé;‘ that Modﬁi‘niié ‘Piyrtdgre{mming

Many new features in the Fortré; 90/95 standard bfo?ide benefits that are unfamiliar to
experienced Fortran 77 softwaré eﬁéineers. These feétures add safety, simplify complex
operations, and allow software to | beorgamzedmaloglcally related way. Since backward
compatibility is preserved one canincféﬁierﬁ#lly maké ,ﬁiodiﬁcations while preserving existing
work. Briefly, some of these new features are:

Modules EncapSiﬁétéés"i (groups togéti{érf)g{dﬁ:ta;' routines, and type declarations

while providing accessibility across: program units.

Use-Association Controls access to madule content across program units.

Interfaces Verifies that the éfgument types in the procedure call match the types in
the procedure declaration.

Derived Types User-defined types that support abstractions in programming. The
creation of these types allows one to support problem domain based
design.

Array Syntax This syntax. simplifies whole array,-and array subset, operations.

Dynamics Various kinds of dynamic structures are supported including allocatable
arrays and pointers.

A very powerful realization is that combining these ideas allows support for object-oriented

concepts. There are a number of textbooks .on Fortran 90. One that we recommend is

“Fortran 90 Programming”, by Ellis, Philips, and Lahey, Addison Wesley, 1994.

2 Step-by-Step Proces for Legacy Software Modernization

In this section we describe the process that one can follow to modernize legacy software.

This process has been successfully applied and it defines a plan of action for such projects.

AN P
I« Standard-Based | Undesirable Features
Legacy Software : Compilation Common Blocks
' B Standard Compliant | Implicit Variables
Legacy Software , 1 Include Statements
Eic...

- Components and OO | N 4 dd New Capabilities

’ Group Related ST | Dynamic Memory Argument Checking

| Abstractions , Interoperability with - Wrappers to Preserve
| Integrate with Larger Other Software Legacy Code

Create Interfaces

The diagram shows the fundamental stages involved. While we focus on Fortran legacy codes
the same stages could be modified for software written in other languages. Many of the

specific actions taken will also depénd on the code stru_cturve‘and objectives.

2.1 Clearly Identify the Objecti(\;\;/“ésw»f B

It is very important to have a conversation with the software owners to determine their
objectives. The flowchart of the modernization pfotess may help guide this discussion.

2.2 Understand the Legacy Software

Understanding, even at a basic level, how the legacy softwate'is organized is valuable. While it
is possible to perform the modernization without detailed knowledge of the application,

knowing the design is very helpful. Here are some common questions that should be asked.

[]
ol
7}
—
=
=.
w»
[=V]
w
—t
o
=
9..
o
=
=]
=
(¢~
o
[=]
[
(4]
Q
]
N
e
f=*]
I =P
o
=%
=
[=]
=
[=%]
—_—
|72}
=]
g
- Z
.
e
b I
- D
2
[=
=5
=
[+"]
(=
-~

o Is this a single language code ora multilanguage code?

e What platforms are requ1red"7ﬂ

o Who is responsible for answering questions if legacy bugs are detected?
e What kind of obsolete features-exist 1n the software?-

e Are any third-party developers involved and is their software proprietary?

2.3 Addressing Undesirable Features

One of the most undesirable features in legacy Fortran 77 codes are COMMON blocks since

they often inhibit more advanced features, like dynamic memory. They also discourage code

sharing since everything is exposed. For this reason, modifying large common blocks can also

be intimidating since inadvertent errors are easy to introduce. Other undesirable features
include implicitly declared variables, which are dangerous, and include statements that are

platform dependent based on how direvc,tor;igs,;ar,e‘ specified.. .

Common blocks can be handled by placing the specification in a Fortran 90/95 module.
Furthermore, rather than using include to make a textual substitution, the module
information can become accessible using the Fortran 90/95 use statement in the appropriate

routines.

! Original COMMON Block in common.inc
real argl(10,10), arg2(10,10)

logical arg3

integer arg4 e e e
COMMON /BLOCK1/ ‘argl,arg2,arg3,arg4d
SAVE /BLOCK1/

subroutine foo() ! Defined in some file..
include ’common.inc’

end
! Modernized Version in common.f

MODULE common_blockl i
implicit none ke

save N

real, dimension(10,10) :: argl, arg2
logical :: arg3

integer :: arg4

END MODULE common_blockl

subroutine foo() ! Defined in some file..
use common_blockl

end subroutine foo

The structure of the replacement is straightforward. One could have simply copied the

original common block from common.inc into a module exactly, but using the Fortran 90/95

6 ’ L 2 September 15, 2000

constructs gives additional advantages. These include the ability to make the block members
dynamic and the ability to add more functionality to the module by making other modules

visible within its scope, to name a few.

2.4 Creating Interfaces

Interfaces are very important, as they add safety to the modernized software. They allow the
compiler to verify consistent argument usage for procedures, which allows subtle errors to be

RLIEE SO

detected and corrected in legacy codes.

Interfaces are created automaticzﬂly fbr routines that are defined within modules, but we are
currently interested in building interfaces for the vlegacy routines that will not be moved into
modules at this time. Not every legacy routine requires. an interface, but all of the routines
accessible from the main program should have an interface. Furthermore, any routines in the

scope of the main program that have arguments that will be dynamic will require an interface.

The interface statement is used to declare the procedure name and the types of its
arguments. Since this is a Fortran:90/95 construct, that will tie in the legacy code to the
modernized code a new Fortran 90/95 interface.f file can be created to declare the Fortran 77
legacy interfaces. These interfaces:can be placed in-a module that in turn may use other

modules, such as the common block modules recently created.-

I Interface Module in interface.f

MODULE interface_module
USE common_blockl
implicit none
save
interface
subroutine foof77(argl, arg2, diml)
real argl(diml,diml)
integer diml
logical argZ2
end subroutine
end interface
END MODULE interface_module

Note that the interface has exactly the same declaration as the original Fortran 77 legacy
procedure, in fact it is best to just copy it explicitly. This means that when the legacy routine
is called additional checks will be’pé‘r‘formed to ensure that the number and types of the

arguments match exactly.

It may look like very little has be’e!ﬁ gained, but the benefit of the interface becomes clear
when it is combined with a wrapper that allows more powerful Fortran 90/95 features to be
applied. For example, many Fortran 77 programs have very long argument lists because extra
information must be included, such as the dimension-of arrays. Since Fortran 90/95 arrays
know their size these arguments do not need to be included in a wrapper function that calls

the original legacy procedure.

8 September 15, 2000

I Interface Module in interface.f‘

MODULE interface_module

USE common_blockl

implicit none

save

interface o
subroutine foof77(argl, arg2, diml)
real argl(diml,diml)
integer diml
logical arg2
end subroutine

end interface

CONTAINS
subroutine foof90(argl, arg2) ! Wrapper
real, dimension(:,:) :: argl
logical :: arg2
call foof77(argl, size(argl,1l), arg2) ! Legacy

end subroutine. foof90
END MODULE interface_module

This is a simple example, but the effect can be significant for very complex procedures. In
fact, more functionality (such as ‘dynamic memory) can be applied at this level using the
wrapper while preserving the original legacy software. Furthermore, this can be achieved

without a serious performance penalty when the legacy routine is non-trivial.

The interfaces can also clarify how Fortran 77 style arguments are sometimes passed to
procedures. For example, it is not uncommon to find Fortran 77 programs that pass a two-
dimensional array to a procedure that. expects.a one-dimensional array. This can cause
compile errors when interfaces are used because they reqﬁire that the arguments must match
exactly. In such instances it is possible to. create multiple interfaces to recognize this
difference using a generic procedure to allow a single name to select the correct module

procedure based on the argument list.

2.5 Adding New Capabilities

Now that the interfaces have been created and wrappers have been introduced to encapsulate
the legacy software new capabilities can be added. For most legacy software the most

desirable feature is dynamic memory. Fortran 90/95 supports many kinds of allocatable

structures and they are straightforward to use. Dynamic memory increases the flexibility of

the software since this frees the application user from fixed problem sizes. Interoperability
with more modern software can also be achieved since the wrappers can be designed to utilize

such applications. These new capabilities can be added without affecting the use of existing

systems.

! Legacy Fortran 77 1nclude file of statxc COMMON data

parameter (mdttl=128)"

integer nElt, RayID(mdttl mdttl),
COMMON /EltInt/ nElt, RayID,..
SAVE /EltInt/

| New Module for COMMON data

MODULE elt_common .
implicit none
save
integer :: nElt, mdttl = 128
integer, allocatable, dimension(:,:)
CONTAINS
I Constructor
subroutine new_elt_common ()
allocate(RayID(mdttl,mdttl))
end subroutine new_elt_ common
END MODULE elt_ common o

! Dynamic al]ocat1on from main program

PROGRAM example
use elt_common
implicit none .
call new_elt_common ()

END PROGRAM example

RayID

10

September 15, 2000

The example above shows a legacy Fortran 77 common block with static data can be
reorganized to support dynamic ‘rﬁe"rﬁory. This occurs by moving the common block into a
module and specifying which‘ s;tructures will be dynamic. A constructor can be created to
perform the allocation of the dyhamic structure and this constructor can be called from the
main program. A number of additional safety features such as checking if the structure was

already allocated, handling of exceptional conditions like insufficient memory, and so forth

can be added as well.

2.6 Moving toward Compone'ﬁt‘sl and Objéc-t-JOIK‘Lier‘l‘tJedeesign

Fortran 90/95 contains derived fypés, lﬂ(e structuféé ir; C; which allow users to create their
own types. This allows one to program u:;;ihg desighs tl;ét better represent the problem
domain. One of the major beneﬁt’s’ of themethodologyls that one can incrementally evolve
the legacy code toward such a’. de31gn while préserl\r/ing’ the functionality of the legacy
software. An object-oriented design allows the imblementation details to change without
affecting the user. In a sense; the interfaces and wrappers have hidden the details of the legacy
software, but we can enhance the .~bwrappers, to. éupport .derived types evolving the code

toward an object-oriented, component-based, design.

11

I Creating derived types for object-based design

type species
real, dimension(:,:), pointer :: coords
real :: charge to_mass, kinetic_energy
end type species

! Using a legacy routine through an 00 wrapper

subroutine w_push(particles, force, dt)
type (species) :: particle
real, dimension(:) :: force
real :: dt, gqbm, wke
integer :: ndim, nparticle, nx
ndim = size(particle%coordinates,?2)
nx = size(force) \
gbm particle%charge_to_mass -
wke particle%kinetic_energy
call push(particle%coords, force, gbm, wke, ndim,
nparticle, nx, dt)
end subroutine w_push

This example shows a legacy push k.:;)routine, wrapped by a Fortran 90/95 w_push(...),
routine that uses a derived type to group together revlated information. This was not possible
in Fortran 77 so long compli}c"‘alted argument lists wéfé required. The species type has a
dynamic component, and other:in:féo[frination, which simplifies the programmer’s view of the

data. Nevertheless, the original legaéy software can still provide the functionality required.

MODULE plasma_class
! Create Derived Types..

CONTAINS
subroutine new_species(..) !.:Constructor..
subroutine w_push(..) ! Class Members..

END MODULE plasma_class

In fact, a class can be created which groups together operations common to the new species

type where the class member routines utilize legacy seftware internally. New software can be

12 o September 15, 2000

added to the class as well. This is a very powerful concept, but careful planning is always

required when building an object-oriented design.

Once the classes have been designed, and tested, the modules can be incorporated into the
main program and calls to the member routines can replace calls to the original legacy
software. Since interfaces for the legacy software still exist this process can be incremental,
the software still works at the end of the day, and development can continue during the

modernization process allowing existing objectives to be satisfied.

3 Experiences and Comments

Legacy software still has great value, but extending that functionality has become more
important. Modern applicationskreqlii‘re greater complexity and support for multiple authors.
More flexible design and dynamic features are also beneficial. Our methodology allows a
modern superstructure to be “er‘e’(;tggsé around a legacy code where data abstraction and
information hiding help to limit ‘éxposure of unnecessary details. Furthermore, modern
software features, combined with ifﬁﬁfd@é’ments in compilers, help to reduce inadvertent
errors. Applying wrappers to. protect legacy software allows one to extend the functionality
of that software. The re-engineering methodology’s cost effectiveness, speed, and ability to
protect one’s investment in the experience and knowledge embedded within legacy software

should be beneficial to a variety of mission software projects.

Acknowledgment

13

This work was developed at the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics and Space Administration and
supported by a grant from the Jet Propulsion Laboratory Center for Space Mission
Information and Software Systems Software Engineering Technology Work Area. The work
of V. K. D. was also partially supported by US Department of Energy, Office of Fusion

Science.

14 September 15, 2000

